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Abstract— Holonomic systems are often complex and ex-
pensive with poor terrain handling capabilities. This paper
introduces HAMR, a platform that is simple and low-cost
with good terrain handling capabilities which was designed
using a new method for characterizing mobility. A mobility
ellipsoid (analogous to a manipulability ellipsoid) is introduced
as a design tool. A metric called holonomicity measures the
extent to which a vehicle can move equally in all directions.
The holonomicity of HAMR is measured experimentally. It is
shown that non-holonomic vehicles can have relatively high
holonomicity as well.

I. INTRODUCTION

There are many performance metrics for measuring a
mobile robot’s ability to traverse a workspace. Key metrics
are typically top speed, maximum payload, cost and capacity
for handling rough terrain. For some applications, however,
the robot’s ability to follow a specified arbitrary trajectory
is also critical. This trajectory following ability is a function
of the robot’s kinematic design.

Holonomic mobile bases are those without constraints on
their direction of motion. Automobiles are not holonomic
because they cannot instantaneously move sideways (thus
the need for parallel parking). Holonomic mobile bases have
been studied for several decades and have a wide variety of
uses where mobile agility is critical. Potential applications
include mobile manipulation [1], pursuit, or movie camera
tracking.

There are a variety of common misconceptions with holo-
nomic drives.

• Drive mechanisms with zero turning radius are some-
times misclassified as holonomic. To follow a trajectory
with sharp corners, these vehicles must stop to reorient
their wheels; holonomic vehicles can change directions
without stopping. Two non-holonomic, zero turning
radius vehicles are the differential drive Pioneer P3-DX
[2] and synchro-drive Real World Interface B12 [3].

• While vehicles with fewer controllable degrees of free-
dom (DOF) than total workspace DOF (three in the case
of land-based mobile robots) must be non-holonomic,
having equal or more controllable than total DOF does
not guarantee holonomy.

Past holonomic approaches include specialized wheels
such as unidirectional frictional wheels, typically with rollers
or wheels mounted around the circumference, omni-wheels
[4], Swedish wheels or Mecanum wheels [5], orthogonal
wheels [6], and ball wheels [7].
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Rollers-on-rim wheel systems suffer from poor terrain
handling: obstacle navigation is limited by the roller radius,
not the wheel radius. Many sizable robots that use these
rollers-on-rim wheels cannot drive over relatively small
bumps such as power cords and carpet thresholds. Since
each roller needs its own bearing surface, these wheel
systems are also mechanically complex and costly. The other
cited holonomic drive examples require more actuators than
the minimum (3) to achieve holonomy so are expensive,
complicated, and heavy.

Differential drives are a common, low cost, non-holonomic
drive system that can be designed to have zero turning radius.
We reintroduce the modification of adding an offset turret
to a differential drive base to achieve holonomy [8], and
we apply a novel optimization criteria to choose geometric
parameters. This mechanism uses the minimum number
of actuators and simple wheels, enabling lower cost and
complexity than the cited alternatives without sacrificing
terrain handling.

II. MOBILITY ELLIPSE AS A PERFORMANCE METRIC

There is a duality between locomotion and manipulation.
Whereas a robot manipulator moves its end effector relative
to its base, the robot locomotor moves its base relative to the
ground. The locomotor can be considered to be manipulating
the world.

Yoshikawa [9] characterizes the response of a manipulator
arm responds to a unit input by deriving an equation based on
the Jacobian that describes an ellipsoid, the manipulability
ellipsoid. We will introduce an extension of this tool for
characterizing mobility.

The Jacobian maps joint-space velocities to end-effector
velocities in the workspace for a given set of joint positions.
We can derive the velocities, force, or torque required at
the joints to attain a specified end-effector reaction. The
manipulability ellipsoid visualizes achievable relative veloc-
ities, rather than absolute velocities; its utility is its ability
to examine workspace dimensions relative to each other.

We extend the concept manipulability ellipsoid to wheeled
mobile robots (WMRs) and call it the mobility ellipsoid,
(ME). After choosing a drive mechanism, we use the mo-
bility ellipsoid to optimize the geometric parameters.

The ME of an WMR is a visual representation of the
robot’s achievable medial (forward/backward), lateral (side-
ways) and rotational velocities, where the Cartesian axes of
the plot correspond to the body DOF. For clarity, we include
the ME’s projection into the Ẏ Ẋ plane, its “shadow,” in the
following figures.



Fig. 1. a) DDR configuration b) Isometric image of ME for DDR r =
a = 1

Fig. 2. a) Isometric image of ME for DDR r = 2, a = 1, b) r = 1, a = 2

For example, the ME for a differential drive robot (DDR)
is pictured in Figure 1b. As indicated by the ellipsoid’s
shadow, a DDR cannot translate laterally (Ẋ = 0) and the
ME is contained in Ẏ Φ̇ plane. The shape of the ellipsoid
reflects the relationship between a DDR’s achievable trans-
lational and rotational velocities: Ẏmax = 0|Φ̇ = Φ̇max, and
Φ̇max = 0|Ẏ = Ẏmax.

Increasing the radius of a DDR’s drive wheels by a factor
of two scales the ellipse, as the new robot would be able
to move at twice the previously achievable speeds (Figure
2a). Increasing a DDR’s wheel separation by a factor of two
compresses the ellipse, as the new robot would be able to
translate just as quickly as before but rotate at half of the
previous speed (Figure 2b).

As a second example, the ME for a 3-wheeled omnidi-
rectional WMR (ODWMR) is pictured in Figure 3b. Since
ODWMR’s are holonomic, the ME is three-dimensional. As
indicated by the circular shadow, an ODWMR’s maximum
rate of translation is the same in any direction. Cross sections
containing the Φ̇ axis are oval, as the robot’s achievable
rotational and translational velocities are inversely related
(as in the case of the differential drive robot).

As with a DDR, increasing wheel radius by a factor of
two scales the ellipsoid by two (Figure 4a). Increasing the
distance from each wheel to the center of the robot vertically
compresses the ellipse, as the new ODWMR’s translational
mobility is unaffected, while its rotational mobility is reduced
(Figure 4b).

Note that we assume a unit velocity vector, i.e. that there
is a joint actuator maximum velocity limit (e.g. independent
of payload, inertias etc.) when considering the envelope of
the ellipsoid.

Fig. 3. a) ODWMR schematic b) Isometric image of ME for ODWMR
r = a = 1

Fig. 4. a) Isometric image of ME for ODWMR r = 2, a = 1 b) r =
1, a = 2

III. HOLONOMICITY

Rather than adhering to the classical mobility binary
of holonomic or non-holonomic, we can use the mobility
ellipsoid to compare WMRs on a continuum. We introduce
the concept of holonomicity as the extent to which a vehicle
can move equally in all global DOF.

For WMRs, which have two translational and one ro-
tational DOF, equal mobility in all DOF would seem to
imply that robots with spherical ME have more holonomicity
than those without. As seen in the case of the ODWMR, a
ME with a circular ẊẎ projection indicates equal lateral
and medial mobility, an intuitive conclusion given that both
motions have the same units. However, metric differences
between translation and rotation complicate the interpretation
of the ẊΦ̇ and Ẏ Φ̇ projections. The characteristic of these
projections from which we draw significant conclusions
is symmetry; MEs that are symmetric about the Φ̇ axis
represent vehicles whose rotational mobility depends only
on the speed of translation, not the direction. We observe
that a WMR for which the ME is symmetric about the Φ̇
axis has higher holonomicity than one for which the ME is
asymmetric.

We use projections and intersections of a WMR’s ME
to guide geometric parameter selection. Projections of the
ME into a normal plane of motion show the relationship
between mobility in those two DOF in that plane irrespective
of mobility in the third. The projection into the ẊẎ plane
shows the envelope of possible translational velocities. For
a DDR, this projection reveals that DDRs cannot translate
laterally, but does not show the inverse relationship between
achievable translational and rotational speeds.



Cross-sections of the ME illustrate the relationship be-
tween between mobility in two DOF, given a constant
velocity in the third. For example, the intersection of a ME
with the ẊẎ plane (Φ̇ = 0) shows a WMR’s capacity for
translating without rotating; the intersection with the plane
Ẏ = Ẏmax/2 shows a WMR’s ability to translate laterally
and rotate when translating forward at half its max speed.

The desired shape of the ME depends on the application.
For a warehouse robot that stocks shelves or an assembly
line robot that transports then installs components, it may
be that the robot’s orientation matters only at the beginning
and end of its motion, while path following and speed are
most important during transit. For a camera robot that films
a target or a vehicle in tight pursuit, it may be that rotational
mobility is important all the time. When using the ME as
a design tool, it is useful to look at both projections and
intersections. The projection of the ME into the ẊẎ plane
shows the mobility relevant during transit. The intersection
of the ME with that plane reflects the mobility relevant at the
beginning and end of transit. The cost of design decisions
such as whether or not to change actuators or geometry
can then be evaluated with respect to the improvement in
application-specific performance. It may be worth altering
the ẊẎ intersection for a service or camera robot which
regularly operates in orientation-constant conditions, but not
for a warehouse or assembly line robot.

IV. DIFFERENTIAL DRIVES WITH AN OFFSET TURRET

Differential drives can be made holonomic if a turret is
added whose axis is not situated between the drive wheels.
The RAMSIS II mechanism analyzed by El-Shenawy et
al. in [8] presents such a configuration. Synchro-drives can
similarly be made holonomic by adding a turret and choosing
a non-central reference point (e.g. the front point) [10].
These configurations are simple and efficient holonomic
drive mechanisms.

We classify the RAMSIS II [8] architecture as a differen-
tial drive with offset turret (DDROT) mechanism, pictured
in Figure 5. It consists of two layers. The lower layer is a
conventional differential drive base, and the upper layer is
a turret that rotates about an axis offset from the rotational
center of the lower layer.

This configuration can be understood as analogous to a
swivel caster. The mounting plate of a swivel caster (gray,
Figure 6a) can be considered as having three passive DOF:
wheel rotation (red axis), wheel heading (green axis), and
turret rotation (blue axis). Other holonomic drive systems
use multiple actuated swivel casters [1].

The DDROT is the actuated equivalent of a single swivel
caster. The two DOF of the differential drive lower layer
correspond to the wheel rotation and wheel heading of the
swivel caster (red and green axes, respectively), though the
wheel heading is not directly controlled by the swivel caster
alone, and the single DOF of the offset turret corresponds to
the turret rotation of the swivel caster (blue axis). Actuation
of these three DOF results in holonomic control of the turret
(gray, Figure 5b) and whatever is mounted to it.

Fig. 5. Diagram of example configuration with DOF

Fig. 6. DOF of a) swivel caster and b) DDROT

The DDROT drive mechanism is characterized by three
parameters, as seen in Figure 5: wheel radius r, wheel
separation 2a, and turret offset b. Designers are often tempted
to set b = 0, especially if the plan form profile is circular,
so the drive wheels can have the largest possible separation
and the system has some symmetrical elegance. However,
holonomic motion is only possible when b > 0 , as will be
shown in Section V.

V. EFFECTS OF DRIVE MECHANISM GEOMETRY

El-Shenawy et al. introduces the DDROT architecture,
but provides no guidelines for the design parameters of the
mechanism; we use the ME method presented in Section II as
a design tool to direct the selection of geometric parameters
for the DDROT. The forward Jacobian transforming actuator
velocities q̇s = [θ̇x1, θ̇x2, θ̇s] to global velocities ṗs =
[Ẋ, Ẏ , Φ̇] for the system shown in Figure 5 is

J =

 −r(bc+ as)/(2a) r(bc− as)/(2a) 0
−r(bs− ac)/(2a) r(bs+ ac)/(2a) 0

r/(2a) −r/(2a) −1

 (1)

[8] where s and c are cos(θs) and sin(θs) respectively. The
ME for the DDROT mechanism with r = a = b = 1
is shown in Figure 7a. Projections of the ME generated
from Eqn. 1 into the ẊẎ , ẊΦ̇ and Ẏ Φ̇ planes, with the
intersection of the ellipsoid with that plane highlighted, are
presented in Figures 7b, 8a and 8b.



Fig. 7. a) Isometric view of ME for RAMSIS II: r = a = b = 1 b)
Projection into ẊẎ plane, intersection with ẊẎ plane highlighted

Fig. 8. a) Projection of ME for DDROT (r = a = b = 1) into ẊΦ̇
plane, ẊΦ̇ intersection with plane highlighted b) Projection into Ẏ Φ̇ plane,
intersection with plane highlighted

A. Pure Translational Mobility

The projection of the mobility ellipse into the ẊẎ plane
(Figure 7b, blue mesh) is circular when a = b, indicating that
the medial (Ẏ ) and lateral (Ẋ) velocities are uniform. Con-
sidering only the differential drive lower layer of DDROT,
one can intuit this relationship by observing that the robot’s
origin and the wheels are equidistant from the lower layer’s
center of rotation when a = b.

A more interesting relationship is presented in the inter-
section of the ME with the ẊẎ plane (Figure 7b, black
line), corresponding to mobility while maintaining (Φ̇ = 0).
Here, the robot can translate medially (Ẏ ) faster than it
can translate laterally (Ẋ). Lateral translation necessitates
rotation of the differential drive; the turret must rotate at the
opposite rate to maintain heading. The rate of pure lateral
translation is thus constrained not only by the geometry of
the differential drive lower layer, but also by the rate at which
the turret can rotate.

B. Orientation Bias

The mobility ellipse for the DDROT is not symmetric.
The projection of the ellipsoid into (and intersection with) the
ẊΦ̇ plane is skewed (Figure 8a). It follows from the previous
discussion of the effects of turret speed on orientation-
constant lateral motion that there is a relationship between
lateral and rotational mobility. As compared to moving in
the ±Y (aligned with wheel, where no lower layer rotation
occurs), moving the ±X direction results in lower layer
rotation directly proportional with the translation speed. This
rotational velocity is then added to any turret rotation, thus

linearly coupling the X direction velocity with rotational
velocity. The skew angle reflects this coupling. We call this
asymmetry ”orientation bias,” and it is most apparent in the
outer shape of the ellipsoid - operation at the maximum ve-
locities. For example, the robot can rotate counter-clockwise
more quickly when translating in the −X direction than
when translating in the +X direction.

C. Design Solutions

To improve robot holonomicity, we need to make the
ellipsoid more uniform. We present three possibilities.

First, we can increase turret offset b relative to wheel
separation a, increasing the robot’s lateral mobility. The
further the turret is offset from the center of rotation of the
differential drive, the greater the ratio of lateral to rotational
velocity; this is the same as increasing r in the equation for
circular motion, vtan = ω· r. The ME for b = 2a is presented
in Figures 9a and 9b. This approach is useful during the early
stages of WMR design, when drive geometry can be altered.

Fig. 9. a) Projection of ME for DDROT (r = 1, a = 1, b = 2) into ẊΦ̇
plane, intersection with plane highlighted b) Projection of ME for DDROT
(r = 1, a = 1, b = 2) into Ẏ Φ̇ plane, intersection with plane highlighted

Second, we can decrease the wheel radius r relative to
turret offset b and wheel separation a. Reducing wheel size
lowers the maximum speed of the differential drive. The ME
for r = a/2 = b/2 is presented in Figures 10a and 10b.
It should be noted that changing wheel size will effect the
robot’s terrain handling.

Fig. 10. a) Projection of ME for DDROT (r = 0.5, a = 1, b = 1) into
ẊẎ plane, intersection with plane highlighted b) Projection into ẊΦ̇ plane,
intersection with plane highlighted

Third, we can adjust the speed of the turret relative to
the drive wheels. As explained previously, the maximum
orientation-constant lateral velocity is, constrained by the



capacity of the turret to counter-rotate against the differential
drive lower layer in the nominal case. Turrets that rotate
faster relative to their differential drive base enable the robot
to maintain orientation through faster lateral movements.
The ME for a configuration where the turret can rotate as
quickly as the differential drive base is presented in Figures
11a and 11b. Note that the intersection line in Figure 11a
is nearly circular. This solution can be applied to retrofit
existing robots if different motors of similar form factor can
be swapped in.

Fig. 11. a) Projection of ME for DDROT (J(3, 3) = −2π, r = a = b =
1) into ẊẎ plane, intersection with plane highlighted b) Projection into
ẊΦ̇ plane, intersection with plane highlighted

VI. HAMR IMPLEMENTATION

HAMR stands for Holonomic Affordable Multi-terrain
Robot and is pictured in Figure 12.

Fig. 12. HAMR, a DDROT optimized using the ME.

The HAMR vehicle’s drive mechanism is an example of a
DDROT whose geometric parameters were optimized using
the ME. The project goal was to build a low-cost robotic
platform capable of traversing typical indoor terrain with
maximum holonomicity. The indoor terrain is classified as
that compliant with the 2010 ADA Standards for Accessible
Design [11] which includes obstacles such as floor bumps
up to 1.27cm.

HAMR’s chassis is concentric with the turret’s axis of
rotation in order to maintain a circular footprint through its
motion. We chose an outer diameter of 60cm for function-
ality as a mounting platform and maneuverability through
ADA compliant space. We chose r = 6.15cm wheels to meet
the terrain handling requirements. We found the maximum
elevator-car to floor gap (3.175cm[11]) to be primarily

responsible for driving wheel size. The turret is compatible
with a family of gearboxes so HAMR’s holonomicity can be
adjusted post-production without chassis modification.

The design results, summarized in Table I, show HAMR’s
ability to handle all ADA compliant indoor terrain.

Metric Target HAMR
Translational Speed 1.0 m/s 1.23 m/s
Rotational Speed 180 ◦/s 270 ◦/s
Incline Ratio* 1:12 1:6
Level Change* 1.27 cm 1.78 cm
Threshold Height* 1.91 cm 1.91 cm
Floor Gap* 3.17 cm 3.81 cm
Payload 20 kg 30 kg
BOM Cost $1000 $967.75

*from ADA accessibility regulations [11]

TABLE I
SUMMARY OF HAMR IMPLEMENTATION PERFORMANCE

We used the ME to choose the turret offset b and wheel
separation 2a. It proved impossible to achieve symmetric
constant-heading translational mobility (a circular ẊẎ cross
section) while maintaining a 60cm robot diameter. By hold-
ing a = b, however, we established equal orientation-variable
translational motion (a circular shadow). We minimized the
skew angle by increasing a and b as much as possible within
the diameter constraint, yielding a = b = 16.41cm.

HAMR’s ME is pictured in Figure 13a, 13b and 14,
respectively.

Fig. 13. a) isometric image of ME for HAMR b) Projection of ME for
HAMR II into ẊẎ plane, intersection with plane highlighted

Fig. 14. Projection of ME for HAMR II into ẊΦ̇ plane, intersection with
plane highlighted

VII. DISCUSSION

The holonomicity as defined in Section III applies to
instantaneous changes in velocity for analyzing theoretically
ideal cases; we now introduce an empirical measure for
mobility we call measured holonomicity.

Given a starting configuration S that fully defines the robot
state in the workspace and a target configuration T that is



a fixed distance dT from the current position, and rotated
θT from the current orientation, the robot is commanded to
move from a stopped state at S to stopped at T in the fastest
manner possible while measuring the time t to complete.

We can find a measured holonomicity for a given θT , H(θ)
by measuring the travel time to reach all positions T (dT ) at
a fixed distance dT from the robot origin

H(θ) =
tmin

tmax
(2)

where tmin is the time of the shortest path of all T (dT ) and
tmax is the longest. Note that the minimum direction and
maximum direction are often known prior to experimenta-
tion, so typically only two measurements are needed. For
example, a car will have tmin when it moves straight, tmax

will occur when parallel parking. The overall holonomicity
H is the worst case (smallest) H(θ) for all θ.

The tmin values serve to normalize the H values. So in
the best case, the maximum holonomicity, H = 1.0, indicates
uniform mobility capability, i.e. motions in all directions are
the same. The worst case, H = 0, occurs if there exists a θ
in which motions could not be achieved (tmax =∞).

This definition also allows comparison of non-holonomic
systems. For example, car-like non-holonomic vehicles can
translate sideways, but more slowly than most DDRs, and
thus H would be smaller.

Note that the choice of dT will affect the measured values
of H . In fact as dT approaches 0, the measured H approaches
the theoretical, Ĥ , which describes instantaneous velocity
capabilities for a given pose. We can thus find Ĥ from ME
which is defined as

Ĥ(θ) =
t̂min

t̂max

(3)

where t̂min and t̂max are minimum and maximum distance
from the center to the surface of the ME and can be
determined from the eigenvalues of the Jacobian. Note that
for non-holonomic vehicles Ĥ = 0.

For HAMR, H = 0.81. The tmin was measured moving
straight forward 1m with wheels aligned and θ = 0. The
tmax trajectory was moving straight 1m laterally starting
with the differential drive initially oriented forwards. As can
be seen in Figure 13b the translations are not uniform. In
hindsight, the third design technique mentioned in Section
V-C of increasing the turret speed would yield a higher H
for this test.

The Willow Garage PR2 has four powered casters whose
caster turning axles are not offset, thus the system is non-
holonomic. The same 1m trajectories to measure H for
HAMR resulted in H = 0.74. The fast caster rotation
yields this relatively high value. For many applications,
this difference would be unnoticed; indeed it is a common
misconception that the PR2 system is holonomic.

VIII. CONCLUSION

In this paper, we propose a novel metric, holonomicity, for
measuring the ability of a wheeled mobile robot to follow a

specified arbitrary trajectory. We also presented an extension
of the manipulability ellipsoid to apply to mobility. This
extension, which we call the mobility ellipse, provides a
design tool for optimizing the geometric parameters of a
given WMR configuration. We used the mobility ellipse
to design a low cost platform called HAMR. Not only
does HAMR have high holonomicity, but it also has better
terrain crossing capabilities than more complicated wheel
holonomic configurations such as omni-wheel bases. While
we use the mobility ellipse exclusively as a tool for selecting
specific geometric parameters, we believe that it has potential
as a powerful performance metric to compare different WMR
configurations.
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